Pólya states of quantized radiation fields, their algebraic characterization and non-classical properties

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1997 J. Phys. A: Math. Gen. 30 L83
(http://iopscience.iop.org/0305-4470/30/5/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.112
The article was downloaded on 02/06/2010 at 06:12

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Pólya states of quantized radiation fields, their algebraic characterization and non-classical properties

Hong-Chen Fu \dagger
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-01, Japan

Received 29 November 1996

Abstract

Pólya states of a single-mode radiation field are proposed and their algebraic characterization and non-classical properties are investigated. They degenerate to the binomial (atomic coherent) and negative binomial (Perelomov's su(1,1) coherent) states in two different limits and further to the number, the ordinary coherent and Susskind-Glogower phase states. The algebra involved turns out to be a two-parameter deformation of both $\operatorname{su}(2)$ and $\operatorname{su}(1,1)$. Non-classical properties are investigated in detail.

1. Introduction

Since Stoler et al introduced the binomial states in 1985 [1], the so-called intermediate states have attracted attention. An important feature of these states is that they interpolate between two fundamental states, such as the number, the coherent and squeezed and the phase states, and reduce to them in two different limits: for example, the binomial states (BS) [1,2] between the number and the coherent states; the negative binomial states (NBS) [3] between the coherent and the Susskind-Glogower (SG) phase states [4]; the hypergeometric states (HGS) between the number and the coherent states [5]; the intermediate numbersqueezed states $[6,7]$ and the intermediate number-phase states [8]. Another feature of some intermediate states is that their photon distributions are some famous probability distributions in probability theory: BS corresponds to the binomial distribution [1], NBS to the negative binomial distribution [3] and HGS to the hypergeometric distribution [5].

In this letter we shall introduce the Pólya states (PS) in the same way as the BS from the binomial distribution [9], namely, we define the Pólya states as probability amplitudes of the Pólya distribution. We find that, as intermediate states, PS interpolate between the BS and NBS, or in other words, the atomic coherent states and the Perelomov's su(1, 1) coherent states. Furthermore, the PS tend to the number and the coherent states (from BS) and the coherent and the SG phase states (from NBS). So the present letter supplies a unified approach to these important quantum states in quantum optics. As in the cases of BS and NBS, the PS also admit the ladder-operator formalism and the algebra involved is a two-parameter deformation of the Holstein-Primakoff (HP) realization of both $\mathrm{su}(2)$ and $\operatorname{su}(1,1)$ in the sense that it contracts to their universal enveloping algebras in two different limits. As far as I know, this kind of deformed algebra has not appeared in the literature. The non-classical properties of PS are also investigated. The field in PS is sub-Poissonian and squeezed in some ranges of parameters involved.
\dagger On leave of absence from the Institute of Theoretical Physics, Northeast Normal University, Changchun 130024, People’s Republic of China. E-mail address: hcfu@yukawa.kyoto-u.ac.jp

2. Pólya states and their limiting states

We define the Pólya states as

$$
\begin{equation*}
|M, \gamma, \eta\rangle=\sum_{n=0}^{M}\left[P_{n}^{M}(\gamma, \eta)\right]^{\frac{1}{2}}|n\rangle \tag{2.1}
\end{equation*}
$$

where $|n\rangle$ is the number state of a single-mode radiation field

$$
\begin{equation*}
\left[a, a^{\dagger}\right]=1 \quad N \equiv a^{\dagger} a \quad a|0\rangle=N|0\rangle=0 \quad|n\rangle=\frac{a^{\dagger n}}{\sqrt{n!}}|0\rangle \tag{2.2}
\end{equation*}
$$

M is a positive integer, $\gamma>0$ is a real constant, η is the probability satisfying $0<\eta<1$ and the photon distribution $|\langle n \mid M, \gamma, \eta\rangle|^{2} \equiv P_{n}^{M}(\gamma, \eta)$ is the Pólya distribution in probability theory $(\bar{\eta}=1-\eta)$ [9]
$P_{n}^{M}(\gamma, \eta)=\binom{M}{n} \frac{\eta(\eta+\gamma) \cdots(\eta+(n-1) \gamma) \bar{\eta}(\bar{\eta}+\gamma) \cdots(\bar{\eta}+(M-n-1) \gamma)}{(1+\gamma)(1+2 \gamma) \cdots(1+(M-1) \gamma)}$.
The Pólya states defined above are obviously normalized since as a probability distribution $P_{n}^{M}(\gamma, \eta)$ satisfies $\sum_{n=0}^{M} P_{n}^{M}(\gamma, \eta)=1$.

It is well known that the Pólya distribution tends to the binomial and negative binomial distributions in the limit $\gamma \rightarrow 0$ (called the $B S$ limit, for convenience) and $M \rightarrow \infty, \gamma \rightarrow 0, \eta \rightarrow 0$ with $M \eta=\lambda$ and $M \gamma=\rho^{-1}$ (called the NBS limit), respectively [9],
$P_{n}^{M} \rightarrow \begin{cases}\binom{M}{n} \eta^{n}(1-\eta)^{M-n} & \text { in the BS limit } \\ \binom{\lambda \rho+n-1}{n}\left(1-\frac{1}{1+\rho}\right)^{\lambda \rho}\left(\frac{1}{1+\rho}\right)^{n} & \text { in the NBS limit. }\end{cases}$
Accordingly, the PS go to the BS and NBS in the BS and NBS limits, respectively. Furthermore, the BS degenerate to the number and coherent states in two different limits [1] and the NBS to the coherent and SG phase states in two different limits [3]. So the PS include the number, the coherent states and SG phase states as their limiting states. Therefore, the PS interpolate between the BS and NBS, or in other words, between the atomic coherent states and Perelomov's su(1, 1) coherent states.

3. Algebraic characterization

Both BS and NBS admit the ladder-operator description, namely, they satisfy the eigenvalue equations of generators of $\operatorname{su}(2)$ or $\mathrm{su}(1,1)$, respectively. In fact, the PS also admit the ladder-operator description. It is easy to verify that PS satisfy the following eigenvalue equation:

$$
\begin{gather*}
\gamma\left[(M-N)\left(\frac{\bar{\eta}}{\gamma}+M-N-1\right)\left(\frac{\eta}{\gamma}+N\right)\right]^{\frac{1}{2}} a|M, \gamma, \eta\rangle \\
=\gamma(M-N)\left(\frac{\eta}{\gamma}+N\right)|M, \gamma, \eta\rangle \tag{3.1}
\end{gather*}
$$

Then in the BS or NBS limits, (3.1) tends to the ladder-operator forms of BS and NBS,

$$
\begin{array}{lr}
\sqrt{1-\eta} J_{M}^{-}|M, 0, \eta\rangle=\sqrt{\eta}(M-N)|M, 0, \eta\rangle & J_{M}^{-} \equiv \sqrt{M-N} a \\
\sqrt{\rho+1} K_{\lambda \rho}^{-}|\infty, 0,0\rangle=(\lambda \rho+N)|\infty, 0,0\rangle & K_{\lambda \rho}^{-} \equiv \sqrt{\lambda \rho+N} a \tag{3.3}
\end{array}
$$

where J_{M}^{-}and $K_{\lambda \rho}^{-}$are the lowering operators of $\mathrm{su}(2)$ and $\mathrm{su}(1,1)$ algebras via their HP realizations. Both limiting results (3.2) and (3.3) suggest that we define the operator on the left-hand side of (3.1) as the lowering operator (up to a constant) of the algebra related to PS:

$$
\begin{equation*}
A^{-}=\frac{\gamma}{\sqrt{(1-\eta)(1+M \gamma)(M \gamma+\eta)}}\left[(M-N)\left(\frac{\bar{\eta}}{\gamma}+M-N-1\right)\left(\frac{\eta}{\gamma}+N\right)\right]^{\frac{1}{2}} a \tag{3.4}
\end{equation*}
$$

Then the algebraic relations among A^{-}, the raising operator $A^{+} \equiv\left(A^{-}\right)^{\dagger}$ and N are obtained as

$$
\begin{equation*}
\left[N, A^{ \pm}\right]= \pm A^{ \pm} \quad A^{+} A^{-}=F(N) \quad A^{-} A^{+}=F(N+1) \tag{3.5}
\end{equation*}
$$

where $F(N)$ is a non-negative Hermitian function

$$
\begin{equation*}
F(N)=\frac{N(M-N+1)(\bar{\eta}+\gamma M-\gamma N)(\eta+\gamma N-\gamma)}{(1-\eta)(\gamma M+1)(\gamma M+\eta)} \tag{3.6}
\end{equation*}
$$

This means that the related algebra, which is an associative algebra generated by A^{-}, A^{+}, N and the unit 1, is a generally deformed oscillator with the structure function $F(N)$. This algebra has an $(M+1)$-dimensional representation on the Fock space because of the condition $A^{+}|M\rangle=F(M+1)|M+1\rangle=0$.

A remarkable feature of this algebra is that in the BS and NBS limits it contracts to the universal enveloping algebras of compact $\mathrm{su}(2)$ and non-compact $\mathrm{su}(1,1)$ Lie algebra:

$$
A^{-} \longrightarrow \begin{cases}\sqrt{M-N} a \equiv J_{M}^{-} & \text {in the BS limit } \tag{3.7}\\ \sqrt{\lambda \rho+N} a \equiv K_{\lambda \rho}^{-} & \text {in the NBS limit. }\end{cases}
$$

Accordingly, its finite-dimensional representation degenerates to a finite-dimensional irreducible representation of $\mathrm{su}(2)$ with the highest weight $M / 2$ and the infinite-dimensional irreducible positive discrete representation of $\operatorname{su}(1,1)$ with the Bargmann index $\lambda \rho / 2$.

4. Non-classical properties

4.1. Photon statistics

The averages $\langle N\rangle$ and $\left\langle N^{2}\right\rangle$ and fluctuation $\left\langle\Delta N^{2}\right\rangle$ are obtained as

$$
\begin{equation*}
\langle N\rangle=M \eta \quad\left\langle N^{2}\right\rangle=M \eta+\frac{M \eta(M-1)(\eta+\gamma)}{1+\gamma} \quad\left\langle\Delta N^{2}\right\rangle=\frac{M \eta(M \eta+1)(1-\eta)}{1+\gamma} . \tag{4.1}
\end{equation*}
$$

Then we can easily derive Mandel's Q-factor

$$
\begin{equation*}
Q_{\gamma}^{M}(\eta)=\frac{\left\langle\Delta N^{2}\right\rangle-\langle N\rangle}{\langle N\rangle}=\frac{(M-1) \gamma}{1+\gamma}-\eta \frac{M \gamma+1}{1+\gamma} \tag{4.2}
\end{equation*}
$$

which is obviously a linear function of η and is a straight line (we call it the Q-line for convenience) connecting the point $\left(0, Q_{\gamma}^{M}(0)\right)$ and $\left(1, Q_{\gamma}^{M}(1)\right)$, where

$$
\begin{equation*}
Q_{\gamma}^{M}(0)=\frac{(M-1) \gamma}{1+\gamma} \equiv(M-1)\left(1-\frac{1}{1+\gamma}\right) \quad Q_{\gamma}^{M}(1)=-1 \tag{4.3}
\end{equation*}
$$

as illustrated in figure 1. We find the following.
(1) In the case $M=1$ or $\gamma=0$ (BS limit), we have $Q_{\gamma}^{M}(0)=0$ and the Q-line connects $(0,0)$ and $(1,-1)$. So in this case $Q_{\gamma}^{M}(\eta)=-\eta<0$ and the field is of subPoissonian character except for $\eta=0$, which corresponds to Poissonian statistics.

Figure 1. The Mandel's Q-factor $Q_{\gamma}^{M}(\eta)$ as a linear funtion of η. This line is from $(0,(M-1) \gamma /(1+\gamma))$ to $(1,-1)$.
(2) If $\gamma>0$ and $M \neq 1$, then $Q_{\gamma}^{M}(0)>0$ and the Q-line must intersect with the line $Q_{\gamma}^{M}(\eta)=0$ at the point

$$
\begin{equation*}
\left(\frac{(M-1) \gamma}{M \gamma+1}, 0\right) \tag{4.4}
\end{equation*}
$$

(see figure 1). This means that, when $\eta>(M-1) \gamma /(M \gamma+1)$ (or $\eta<(M-1) \gamma /(M \gamma+1))$, $Q_{\gamma}^{M}(\eta)<0\left(\right.$ or $\left.Q_{\gamma}^{M}(\eta)>0\right)$ and the field in PS is of subPoissonian (superPoissonian). The point $\eta=(M-1) \gamma /(M \gamma+1)$ corresponds to Poissonian statistics. In this case, the value of M and η will affect the ranges of subPoissonian (or superPoissonian) statistics. The larger M or/and γ, the larger $Q_{\gamma}^{M}(0)$ and therefore $(M-1) \gamma /(M \gamma+1)$. So the subPoissonian range $(M-1) \gamma /(M \gamma+1)<\eta<1$ becomes smaller.

4.2. Squeezing effect

It is easy to evaluate that

$$
\begin{equation*}
a^{k}|M, \gamma, \eta\rangle=\left[\prod_{i=0}^{k-1}(M-i) \frac{k \gamma+\eta}{k \gamma+1}\right]^{\frac{1}{2}}\left|M-k, \frac{\gamma}{k \gamma+1}, \frac{k \gamma+\eta}{k \gamma+1}\right\rangle \tag{4.5}
\end{equation*}
$$

for $k \leqslant M$ and $a^{k}|M, \gamma, \eta\rangle=0$ for $k>M$. Define the coordinate x and the momentum p as

$$
\begin{equation*}
x=\frac{1}{\sqrt{2}}\left(a^{\dagger}+a\right) \quad p=\frac{\mathrm{i}}{\sqrt{2}}\left(a^{\dagger}-a\right) . \tag{4.6}
\end{equation*}
$$

Then their variances are obtained as

$$
\begin{gather*}
\left\langle\Delta x^{2}\right\rangle=\frac{1}{2}+M \eta+\left[M \eta(M-1) \frac{\eta+\gamma}{\gamma+1}\right]^{\frac{1}{2}} \sum_{n=0}^{M-2} \sqrt{P_{n}^{M}(\gamma, \eta) P_{n}^{M-2}\left(\frac{\gamma}{2 \gamma+1}, \frac{2 \gamma+\eta}{2 \gamma+1}\right)} \\
-2 M \eta\left[\sum_{n=0}^{M-1} \sqrt{P_{n}^{M}(\gamma, \eta) P_{n}^{M-1}\left(\frac{\gamma}{\gamma+1}, \frac{\gamma+\eta}{\gamma+1}\right)}\right]^{2} \tag{4.7}
\end{gather*}
$$

Figure 2. Variance $\left\langle\Delta x^{2}\right\rangle \equiv X$ as a function of η and γ for $M=5,20$.

Figure 3. Variance $\left\langle\Delta p^{2}\right\rangle \equiv P$ as a function of η and γ for $M=5,20$.
$\left\langle\Delta p^{2}\right\rangle=\frac{1}{2}+M \eta-\left[M \eta(M-1) \frac{\eta+\gamma}{\gamma+1}\right]^{\frac{1}{2}} \sum_{n=0}^{M-2} \sqrt{P_{n}^{M}(\gamma, \eta) P_{n}^{M-2}\left(\frac{\gamma}{2 \gamma+1}, \frac{2 \gamma+\eta}{2 \gamma+1}\right)}$.

Figures 2 and 3 show how $\left\langle\Delta x^{2}\right\rangle$ and $\left\langle\Delta p^{2}\right\rangle$ depend on the parameter γ and η, respectively. In each case, different values of M (5 and 20) are chosen. From these plots we find the following.

Quadrature x (see figure 2). When $\gamma=0$ (BS case), the quadrature x is squeezed in a considerable range $0<\eta \leqslant \eta_{0}<1$ of values of η, with a maximum squeezing (minimum of $\left\langle\Delta x^{2}\right\rangle$ that depends on M (the larger M, the wider the range and the smaller $\left\langle\Delta x^{2}\right\rangle$), as indicated in [1] and figure 2 . With the increase of γ, the squeezing range becomes smaller and smaller and $\left\langle\Delta x^{2}\right\rangle$ becomes larger and larger until the squeezing disappears for large enough γ. For large M, the squeezing disappears faster than that for small M.

Quadrature p (see figure 3). It is well known that there is no squeezing for $\gamma=0$ (BS). However, with the increase of γ, the quadrature p becomes squeezed drastically in the range of $0<\eta \leqslant \eta_{0}<1$ and $\left|\left\langle\Delta p^{2}\right\rangle\right|$ decreases drastically until the maximum squeezing is reached. Then, by further increasing γ, the squeezing range becomes smaller and smaller and squeezing becomes weaker and weaker. However, the quadrature p is still squeezed for a very large value of γ. In fact, we can check that only when $\gamma \rightarrow \infty$ does $\left\langle\Delta p^{2}\right\rangle$ go to $1 / 2$. We also see that $\left\langle\Delta p^{2}\right\rangle$ for large M is more sensitive to the parameter γ than that for small M.

5. Conclusion

In this letter we have introduced and investigated the Pólya states and found the following.
(1) As intermediate states, the Pólya states interpolate the binomial states (or the atomic states) and the negative binomial states (or the Perelomov's coherent states).
(2) Ladder-operator forms of BS and NBS , which are related to $\mathrm{su}(2)$ and $\mathrm{su}(1,1)$ algebras, respectively, are generalized to the PS case. This algebraic characterization leads to an algebra which is a two-parameter (η and γ) deformation of universal enveloping algebra of Lie algebras $\operatorname{su}(2)$ and $\operatorname{su}(1,1)$ and contracts to them in two different limits. This is natural since the PS are intermediate states between $\mathrm{su}(2)(\mathrm{BS})$ and $\mathrm{su}(1,1)$ (NBS) coherent states. To our knowledge this kind of algebra which mixes $\mathrm{su}(2)$ and its non-compact counterpart $\mathrm{su}(1,1)$ has not appeared before in the literature.
(3) We have indicated in [3] that the non-classical properties of BS and NBS are complementary. As states interpolating the BS and NBS the PS clearly share the characters of both BS and NBS: the field in PS is of subPoissonian character in some range of parameters involved and of superPoissonian character in a different region of parameters, and both quadratures x and p are squeezed in considerable ranges of parameters.

The author thanks Professor Ryu Sasaki for valuable discussions and comments. He is grateful to the Japanese Society for the Promotion of Science (JSPS) for the fellowship. This work is also supported in part by the National Science Foundation of China.

Appendix. The Pólya distribution

Pólya originally introduced the Pólya distribution in 1930 [10] when considering the sampling from a finite population of objects, the numbers of which change with the removal of each individual unit. Suppose an urn contains a white balls and b black balls. A ball is chosen at random and replaced, together with c balls of the same kind. If M successive drawings have already been made, of which n are white and $M-n$ black, the probability P_{n} of obtaining n white balls in a sequence of M is

$$
P_{n}=\binom{M}{n} \frac{a(a+c) \cdots[a+c(n-1)] b(b+c) \cdots[b+c(M-n-1)]}{(a+b)(a+b+c) \cdots[a+b+c(M-1)]} .
$$

This is just the Pólya distribution (2.3) if we put

$$
\eta=\frac{a}{a+b} \quad \bar{\eta}=\frac{b}{a+b} \quad \gamma=\frac{c}{a+b} .
$$

For more details please see [9].

References

[1] Stoler D, Saleh B E A and Teich M C 1985 Opt. Acta. 32, 345
[2] Vidiella-Barranco A and Roversi J 1994 Phys. Rev. A 505233
[3] Fu H C and Sasaki R 1996 Negative binomial and multinomial states: probability distributions and coherent states Preprint quant-ph/9610022
Fu H C and Sasaki R 1996 Negative binomial states of quantized radiation fields Preprint quant-ph/9610024
[4] Susskind L and Glogower J 1964 Physics 149
[5] Fu H C and Sasaki R 1997 J. Math. Phys. 38 at press; Preprint quant-ph/9610021
[6] Baseia B, de Lima A F and de Silva A J 1995 Mod. Phys. Lett. A 91673
[7] Fu H C and Sasaki R 1996 J. Phys. A: Math. Gen. 295637
[8] Baseia B, de Lima A F and Marques G C 1995 Phys. Lett. 204A 1
[9] Moran P A P 1968 An Introduction to Probability Theory (New York: Oxford University Press)
[10] Pólya G 1930 Ann. Inst. Poincaré. 1117

