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Pólya states of quantized radiation fields, their algebraic
characterization and non-classical properties

Hong-Chen Fu†
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-01, Japan

Received 29 November 1996

Abstract. Pólya states of a single-mode radiation field are proposed and their algebraic
characterization and non-classical properties are investigated. They degenerate to the binomial
(atomic coherent) and negative binomial (Perelomov’s su(1, 1) coherent) states in two different
limits and further to the number, the ordinary coherent and Susskind–Glogower phase states.
The algebra involved turns out to be a two-parameter deformation of both su(2) and su(1, 1).
Non-classical properties are investigated in detail.

1. Introduction

Since Stoleret al introduced the binomial states in 1985 [1], the so-calledintermediate
stateshave attracted attention. An important feature of these states is that they interpolate
between two fundamental states, such as the number, the coherent and squeezed and the
phase states, and reduce to them in two different limits: for example, the binomial states (BS)
[1, 2] between the number and the coherent states; the negative binomial states (NBS) [3]
between the coherent and the Susskind–Glogower (SG) phase states [4]; the hypergeometric
states (HGS) between the number and the coherent states [5]; the intermediate number-
squeezed states [6, 7] and the intermediate number-phase states [8]. Another feature of
some intermediate states is that their photon distributions are some famous probability
distributions in probability theory: BS corresponds to the binomial distribution [1], NBS to
the negative binomial distribution [3] and HGS to the hypergeometric distribution [5].

In this letter we shall introduce thePólya states(PS) in the same way as the BS from
the binomial distribution [9], namely, we define thePólya statesasprobability amplitudes
of the Pólya distribution. We find that, as intermediate states, PS interpolate between the
BS and NBS, or in other words, the atomic coherent states and the Perelomov’s su(1, 1)
coherent states. Furthermore, the PS tend to the number and the coherent states (from
BS) and the coherent and the SG phase states (from NBS). So the present letter supplies a
unified approach to these important quantum states in quantum optics. As in the cases of
BS and NBS, the PS also admit the ladder-operator formalism and the algebra involved is
a two-parameter deformation of the Holstein–Primakoff (HP) realization of both su(2) and
su(1, 1) in the sense that it contracts to their universal enveloping algebras in two different
limits. As far as I know, this kind of deformed algebra has not appeared in the literature.
The non-classical properties of PS are also investigated. The field in PS is sub-Poissonian
and squeezed in some ranges of parameters involved.

† On leave of absence from the Institute of Theoretical Physics, Northeast Normal University, Changchun 130024,
People’s Republic of China. E-mail address: hcfu@yukawa.kyoto-u.ac.jp

0305-4470/97/050083+07$19.50c© 1997 IOP Publishing Ltd L83



L84 Letter to the Editor

2. Pólya states and their limiting states

We define the Ṕolya states as

|M,γ, η〉 =
M∑
n=0

[PMn (γ, η)]
1
2 |n〉 (2.1)

where|n〉 is the number state of a single-mode radiation field

[a, a†] = 1 N ≡ a†a a|0〉 = N |0〉 = 0 |n〉 = a†n√
n!
|0〉. (2.2)

M is a positive integer,γ > 0 is a real constant,η is the probability satisfying 0< η < 1 and
the photon distribution|〈n|M,γ, η〉|2 ≡ PMn (γ, η) is the Ṕolya distribution in probability
theory (̄η = 1− η) [9]

PMn (γ, η) =
(
M

n

)
η(η + γ ) · · · (η + (n− 1)γ ) η̄(η̄ + γ ) · · · (η̄ + (M − n− 1)γ )

(1+ γ )(1+ 2γ ) · · · (1+ (M − 1)γ )
. (2.3)

The Ṕolya states defined above are obviously normalized since as a probability distribution
PMn (γ, η) satisfies

∑M
n=0P

M
n (γ, η) = 1.

It is well known that the Ṕolya distribution tends to the binomial and negative
binomial distributions in the limitγ → 0 (called theBS limit, for convenience) and
M →∞, γ → 0, η→ 0 with Mη = λ andMγ = ρ−1 (called theNBS limit), respectively
[9],

PMn →


(
M

n

)
ηn(1− η)M−n in the BS limit(

λρ + n− 1
n

)(
1− 1

1+ ρ
)λρ ( 1

1+ ρ
)n

in the NBS limit.

Accordingly, the PS go to the BS and NBS in the BS and NBS limits, respectively.
Furthermore, the BS degenerate to the number and coherent states in two different limits
[1] and the NBS to the coherent and SG phase states in two different limits [3]. So the
PS include the number, the coherent states and SG phase states as their limiting states.
Therefore, the PS interpolate between the BS and NBS, or in other words, between the
atomic coherent states and Perelomov’s su(1, 1) coherent states.

3. Algebraic characterization

Both BS and NBS admit the ladder-operator description, namely, they satisfy the eigenvalue
equations of generators of su(2) or su(1, 1), respectively. In fact, the PS also admit the
ladder-operator description. It is easy to verify that PS satisfy the following eigenvalue
equation:

γ

[
(M −N)

(
η̄

γ
+M −N − 1

)(
η

γ
+N

)] 1
2

a|M,γ, η〉

= γ (M −N)
(
η

γ
+N

)
|M,γ, η〉. (3.1)

Then in the BS or NBS limits, (3.1) tends to the ladder-operator forms of BS and NBS,√
1− ηJ−M |M, 0, η〉 = √η(M −N)|M, 0, η〉 J−M ≡

√
M −N a (3.2)√

ρ + 1K−λρ |∞, 0, 0〉 = (λρ +N)|∞, 0, 0〉 K−λρ ≡
√
λρ +N a (3.3)
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whereJ−M andK−λρ are the lowering operators of su(2) and su(1, 1) algebras via their HP
realizations. Both limiting results (3.2) and (3.3) suggest that we define the operator on the
left-hand side of (3.1) as thelowering operator(up to a constant) of the algebra related to
PS:

A− = γ√
(1− η)(1+Mγ)(Mγ + η)

[
(M −N)

(
η̄

γ
+M −N − 1

)(
η

γ
+N

)] 1
2

a. (3.4)

Then the algebraic relations amongA−, the raising operator A+ ≡ (A−)† and N are
obtained as

[N, A±] = ±A± A+A− = F(N) A−A+ = F(N + 1) (3.5)

whereF(N) is a non-negative Hermitian function

F(N) = N(M −N + 1)(η̄ + γM − γN)(η + γN − γ )
(1− η)(γM + 1)(γM + η) . (3.6)

This means that the related algebra, which is an associative algebra generated byA−, A+,
N and the unit 1, is agenerally deformed oscillatorwith the structure functionF(N).
This algebra has an(M + 1)-dimensional representation on the Fock space because of the
conditionA+|M〉 = F(M + 1)|M + 1〉 = 0.

A remarkable feature of this algebra is that in the BS and NBS limits it contracts to the
universal enveloping algebras of compact su(2) and non-compact su(1, 1) Lie algebra:

A− −→
{√

M −Na ≡ J−M in the BS limit√
λρ +Na ≡ K−λρ in the NBS limit.

(3.7)

Accordingly, its finite-dimensional representation degenerates to a finite-dimensional
irreducible representation of su(2) with the highest weightM/2 and the infinite-dimensional
irreducible positive discrete representation of su(1, 1) with the Bargmann indexλρ/2.

4. Non-classical properties

4.1. Photon statistics

The averages〈N〉 and〈N2〉 and fluctuation〈1N2〉 are obtained as

〈N〉 = Mη 〈N2〉 = Mη + Mη(M − 1)(η + γ )
1+ γ 〈1N2〉 = Mη(Mη + 1)(1− η)

1+ γ .

(4.1)

Then we can easily derive Mandel’sQ-factor

QM
γ (η) =

〈1N2〉 − 〈N〉
〈N〉 = (M − 1)γ

1+ γ − ηMγ + 1

1+ γ (4.2)

which is obviously a linear function ofη and is a straight line (we call it theQ-line for
convenience) connecting the point(0,QM

γ (0)) and(1,QM
γ (1)), where

QM
γ (0) =

(M − 1)γ

1+ γ ≡ (M − 1)

(
1− 1

1+ γ
)

QM
γ (1) = −1 (4.3)

as illustrated in figure 1. We find the following.
(1) In the caseM = 1 orγ = 0 (BS limit), we haveQM

γ (0) = 0 and theQ-line connects
(0, 0) and (1,−1). So in this caseQM

γ (η) = −η < 0 and the field is of subPoissonian
character except forη = 0, which corresponds to Poissonian statistics.
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Figure 1. The Mandel’sQ-factor QM
γ (η) as a linear funtion ofη. This line is from

(0, (M − 1)γ /(1+ γ )) to (1,−1).

(2) If γ > 0 andM 6= 1, thenQM
γ (0) > 0 and theQ-line must intersect with the line

QM
γ (η) = 0 at the point(

(M − 1)γ

Mγ + 1
, 0

)
(4.4)

(see figure 1). This means that, whenη > (M−1)γ /(Mγ+1) (or η < (M−1)γ /(Mγ+1)),
QM
γ (η) < 0 (orQM

γ (η) > 0) and the field in PS is of subPoissonian (superPoissonian). The
pointη = (M−1)γ /(Mγ +1) corresponds to Poissonian statistics. In this case, the value of
M andη will affect the ranges of subPoissonian (or superPoissonian) statistics. The larger
M or/andγ , the largerQM

γ (0) and therefore(M − 1)γ /(Mγ + 1). So the subPoissonian
range(M − 1)γ /(Mγ + 1) < η < 1 becomes smaller.

4.2. Squeezing effect

It is easy to evaluate that

ak|M,γ, η〉 =
[ k−1∏
i=0

(M − i)kγ + η
kγ + 1

] 1
2
∣∣∣∣M − k, γ

kγ + 1
,
kγ + η
kγ + 1

〉
(4.5)

for k 6 M andak|M,γ, η〉 = 0 for k > M. Define the coordinatex and the momentump
as

x = 1√
2
(a† + a) p = i√

2
(a† − a). (4.6)

Then their variances are obtained as

〈1x2〉 = 1

2
+Mη +

[
Mη(M − 1)

η + γ
γ + 1

] 1
2 M−2∑
n=0

√
PMn (γ, η)P

M−2
n

(
γ

2γ + 1
,

2γ + η
2γ + 1

)

−2Mη

[M−1∑
n=0

√
PMn (γ, η)P

M−1
n

(
γ

γ + 1
,
γ + η
γ + 1

)]2

(4.7)
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M=5
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M=20

Figure 2. Variance〈1x2〉 ≡ X as a function ofη andγ for M = 5, 20.
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Figure 3. Variance〈1p2〉 ≡ P as a function ofη andγ for M = 5, 20.

〈1p2〉 = 1

2
+Mη −

[
Mη(M − 1)

η + γ
γ + 1

] 1
2 M−2∑
n=0

√
PMn (γ, η)P

M−2
n

(
γ

2γ + 1
,

2γ + η
2γ + 1

)
.

(4.8)

Figures 2 and 3 show how〈1x2〉 and 〈1p2〉 depend on the parameterγ and η,
respectively. In each case, different values ofM (5 and 20) are chosen. From these
plots we find the following.

Quadrature x(see figure 2). Whenγ = 0 (BS case), the quadraturex is squeezed in a
considerable range 0< η 6 η0 < 1 of values ofη, with a maximum squeezing (minimum
of 〈1x2〉 that depends onM (the largerM, the wider the range and the smaller〈1x2〉), as
indicated in [1] and figure 2. With the increase ofγ , the squeezing range becomes smaller
and smaller and〈1x2〉 becomes larger and larger until the squeezing disappears for large
enoughγ . For largeM, the squeezing disappears faster than that for smallM.
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Quadrature p(see figure 3). It is well known that there is no squeezing forγ = 0 (BS).
However, with the increase ofγ , the quadraturep becomes squeezed drastically in the
range of 0< η 6 η0 < 1 and|〈1p2〉| decreases drastically until the maximum squeezing is
reached. Then, by further increasingγ , the squeezing range becomes smaller and smaller
and squeezing becomes weaker and weaker. However, the quadraturep is still squeezed
for a very large value ofγ . In fact, we can check that only whenγ →∞ does〈1p2〉 go
to 1/2. We also see that〈1p2〉 for largeM is more sensitive to the parameterγ than that
for smallM.

5. Conclusion

In this letter we have introduced and investigated the Pólya states and found the following.
(1) As intermediate states, the Pólya states interpolate the binomial states (or the atomic

states) and the negative binomial states (or the Perelomov’s coherent states).
(2) Ladder-operator forms of BS and NBS, which are related to su(2) and su(1, 1)

algebras, respectively, are generalized to the PS case. This algebraic characterization leads to
an algebra which is a two-parameter (η andγ ) deformation of universal enveloping algebra
of Lie algebras su(2) and su(1, 1) and contracts to them in two different limits. This is
natural since the PS are intermediate states between su(2) (BS) and su(1, 1) (NBS) coherent
states. To our knowledge this kind of algebra which mixes su(2) and its non-compact
counterpart su(1, 1) has not appeared before in the literature.

(3) We have indicated in [3] that the non-classical properties of BS and NBS are
complementary. As states interpolating the BS and NBS the PS clearly share the characters
of both BS and NBS: the field in PS is of subPoissonian character in some range of
parameters involved and of superPoissonian character in a different region of parameters,
and both quadraturesx andp are squeezed in considerable ranges of parameters.

The author thanks Professor Ryu Sasaki for valuable discussions and comments. He is
grateful to the Japanese Society for the Promotion of Science (JSPS) for the fellowship.
This work is also supported in part by the National Science Foundation of China.

Appendix. The Pólya distribution

Pólya originally introduced the Ṕolya distribution in 1930 [10] when considering the
sampling from a finite population of objects, the numbers of which change with the removal
of each individual unit. Suppose an urn containsa white balls andb black balls. A ball
is chosen at random and replaced, together withc balls of the same kind. IfM successive
drawings have already been made, of whichn are white andM − n black, the probability
Pn of obtainingn white balls in a sequence ofM is

Pn =
(
M

n

)
a(a + c) · · · [a + c(n− 1)]b(b + c) · · · [b + c(M − n− 1)]

(a + b)(a + b + c) · · · [a + b + c(M − 1)]
.

This is just the Ṕolya distribution (2.3) if we put

η = a

a + b η̄ = b

a + b γ = c

a + b .

For more details please see [9].
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